
Team Members - Daniel Griffin, Yudhister Satija

766 CV Deep Object Detection Project
Proposal

Contents
1. Midterm Report

a. Why we decided to change our proposal.
i. Challenges we faced with the original proposal.

b. Updated Proposal
i. Problem?
ii. Importance?
iii. State-of-the-art?
iv. Existing system or New approach?
v. Evaluation and Results plan?

c. Current Progress.
i. Current results.
ii. Challenges.

d. Plan for the rest of the semester.
i. Outline of goals and Project Specifics. (This is where the specifics of

what/how we plan to complete the project are)
2. Further Notes and References.

Team Members - Daniel Griffin, Yudhister Satija

Midterm Report

Why we decided to change our proposal

Challenges we faced with the original proposal
Our original plan was to try to implement the networks from the paper ‘A Unified

Multi-scale Deep CNN for Fast Object Detection’. However, we came to the conclusion that
there were simply too many challenges to try to overcome in a reasonable amount of time.
Some of these issues include the problem that the network might require too much time to
implement or possibly even train (given we could implement it) within the given time restrictions.
The paper also has many very particular nuances about how data is labeled, how data is
sampled (special objectness bootstrapping), how the network is initialized, how the network is
trained through multiple phases, separate stages of parameter modification etc. Some other
aspects of overall complexity included the proposal network complexity, prediction network
complexity, sampling methods, data set weighting and importance methods, hand tuned SGD,
hand tuned weight transitions, unclear intermediate image scaling, deconvolution layers, etc.

We came to the conclusion that the paper's methods are so fine tuned that the resulting
network is almost certainly overfitted to the data set used by the paper, and any extensions (if
any could even be made) would have small value. Many papers in the deep net object detection
field in fact seem to be this way, and indicate a somewhat “directionless” notion of general
research that favors overfitting models specific to a specific task, or data set that likely don’t
generalize well. This realization, in part, helped lead us to our updated proposal described in the
next section.

Updated proposal

Problem?
How well do current cutting edge deep neural networks work in terms of accuracy, time

to train, time to predict, kind of image, and sensitivity to noise? How statistically different are the
most representative kinds of deep neural network object detection models in terms of
performance? How do the deep network object detection models differ, how does this contribute
to performance, and are there any rules, guidelines, or insights that can be used in general for
developing deep neural network based object detection models? These are just a few important
questions that require substantial analysis and benchmarking of existing deep neural network
based object detection models.

We seek to compare and bench-mark several representative techniques, each of which
may not be super-optimized. In doing so, we seek to gain some intuition about the relative
limitations / advantages of different methods in terms of performance, robustness, and in
dealing with different kinds of images.

Team Members - Daniel Griffin, Yudhister Satija

Importance?
While some simple benchmarking has been previously performed, there exists a need to

thoroughly benchmark and explore today’s existing cutting edge object detection models to
understand how they differ, potential shortcomings, and how new models may be designed that
improve upon issues that exist with today’s models. While it is known that deep neural networks
produce some of the highest detection performance, it is not yet fully understood if there are
good rules or guidelines for designing modern detection networks, and the full capabilities or
drawbacks of existing cutting edge detection networks are only understood at a cursory level.
Deep analysis of today’s cutting edge object detection neural networks is necessary to
understand where improvements should be made for future research, which methods should be
applied for different scenarios, when current methods perform within their suggested
performance bounds, and the potentially unstated drawbacks of current methods.

State-of-the-art?
We aim to benchmark some of the most commonly used, modern deep neural networks

including Mask R-CNN , RetinaNet, Faster R-CNN, RPN, Fast R-CNN, and R-FCN. Some of the
pre-trained backbone networks we are looking to use include ResNeXt{50,101,152},
ResNet{50,101,152}, Feature Pyramid Networks, and VGG16. The datasets we aim to use
include the COCO dataset, PASCAL VOC dataset, and the Kitti object detection dataset. These
network architecture designs, and network backbones represent some of the most common
cutting edge object detection deep neural networks that exist today. We hope to also be able to
implement and test the YOLO (You only look once) network structure if we have time, as it is a
network proposed to focus more on speedy predictions for near-real-time applications.

In terms of actual analysis, not much work has been performed into analysis of deep
neural network models other than basic average performance metrics of individual models. Most
work focuses more on proposing a new architecture for a deep network object detection model,
rather than comparing its significant difference with existing methods, major fundamental
drawbacks, and other ways in which the network can be fooled or broken. In terms of
robustness and sensitivity to noise, even less work on deep network based object detection
models has been performed.

Existing system or New approach?
We plan on benchmarking existing neural network designs and implementations that are

representative of current deep neural network object detection based methods, with one
particular goal being a proposal and outline of future research work that should be developed to
address some of the issues we find. This might fall under the category of a “New approach”.
However, we also plan on performing deeper analysis of existing methods than has been
previously performed to provide for a better overall understanding of how well modern methods
compare, how similar and different the methods are, which approaches seem to work the best,
and what shortcoming exist with existing methods.

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

Team Members - Daniel Griffin, Yudhister Satija

Evaluation and Results plan?
Our project proposal centers around benchmarking and analyzing different deep object

detection networks, so the evaluation phase is really the meat of our project (aside from getting
everything up and running). The details of what we plan on benchmarking, what platforms we
plan to use, what data sets we plan to use, and what metrics we plan to calculate are given in
the “Plan for the rest of the semester” section below.

Current progress

Current results.
● Running on Condor:

○ Condor standard submit: We’ve set up all of the scripts and code necessary for
running on the standard condor instances.

○ Condor Docker based submit: We’ve set up all of the scripts and code necessary
for running on the docker based condor instances.

○ Condor Nvidia Docker GPU submit: We’ve set up all of the scripts and code
necessary for running on the nvidia-docker GPU based condor instances.

● Running on AWS:
○ EC2 GPU instances: We’ve developed a process for provisioning AWS EC2

p2.xlarge GPU instances, along with everything that goes with that (VPC
nets/subnets, security configs, S3 block storage instances, data center limits
provisioning, etc…)

○ Docker everything: we’ve dockerized all of our code to run on the GPU based
instances. (You can build on a non-GPU based instance, but running the deep
nets requires GPUs since the tensor operators are implemented in terms of GPU
operations)

● Running initial object detection network
○ Network Architecture, backbone: The object detection results provided below are

for a ‘Mask R-CNN’ model with a ‘ResNet-101-FPN’ network initialization.
○ Images we’ve run on:

■ We’ve run the above specified network on some basic, annotated images
and generated some resulting images, which we show below.

Team Members - Daniel Griffin, Yudhister Satija

Challenges.
● Refactoring our project and proposal.

○ So we had to rapidly change our direction when we realized the tedious
complexity of our original project proposal, and search for a new potential project.
We had to review lots of object detection papers and methods to come up with a
new project to work on. Once we had an idea that we wanted to try to perform a
set of benchmarking, we had to find candidate models, platforms, frameworks,
datasets, and metrics that we thought we could achieveably use for our project.
Some of the challenges of these are found in the next subsections.

● Running on Condor GPUs and getting access to resources.
○ Most of today’s existing deep neural network, object detection based models

require GPUs (A major drawback which I believe will eventually be remedied with
FPGAs due to their high speed, low power nature which makes them a defacto
choice for most industry scale, long term use). So, we talked to the University of
Wisconsin’s HPC group about running on the GPU based condor instances. We
spent a good amount of time writing the submission and monitoring scripts for the
GPU instances, and in particular the docker based GPU instances to simplify
code submission. However, there are only 2 machines in HPC with 4 total GPUs
that currently run docker, and the queue is so congested that using condor for
our project became clearly impractical (I submitted a GPU based docker job
about a week ago that still hasn’t been run yet). I’ve talked with the condor HPC

https://medium.com/@julsimon/building-fpga-applications-on-aws-and-yes-for-deep-learning-too-643097257192

Team Members - Daniel Griffin, Yudhister Satija

staff, and they are working on getting docker running on the other 2 older
instances (each with 6-8 GPUs each) that don’t have Docker (But we can’t use
these without docker, as the nature of the code we are trying to run on the
machines requires installation and system configuration permissions).

● Running on AWS, and the cost associated with it.
○ Since we couldn’t run on the condor instances, we decided to turn to Amazon

Web Services (AWS) to try to provision instances. After a few days of working
with AWS EC2 instances, we finally developed a process for provisioning AWS
GPU instance resources for running our nvidia-docker based code, and running
some of our initial deep net object detection models (Many of which need GPUs
for their operators, and up to 15GB of dedicated system memory). The downside
with this is that AWS GPU instances are $1/HR to provision and use which is
quite expensive for compute resources (And why we are trying to avoid training
models that can each take anywhere from hours to days to train).

● Dataset non-uniformity.
○ While there exist some different datasets for benchmarking object detection,

most data sets have different formats. We have decided to try to standardize to
the COCO dataset API, and to try to convert some of the other data sets we
would like to use to the COCO annotation specifications. This means that we will
likely have to write scripts for generating COCO annotated images from each
data set.

Plan for the rest of the semester.

Outline of goals and Project Specifics.
Below, we outline the specifics of what we will try to implement in terms of the deep net

architectures, datasets, platforms, and metrics.

Insights, Design Guidelines, and Further Research Avenues:

1. Benchmark each network architecture and backbone structure individually for
performance, resource, and network sensitivity metrics.

2. Compare benchmarks of each network and structure against each other for
statistical significance.

3. Outline insights and attempt to develop general recipe-book object recognition
network algorithm design for different scenarios, and propose new research
directions.

Deep Net Object Detectors:
1. Deep Net Architectures:

a. Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, and R-FCN.
2. Deep Net Pre-Trained Networks:

a. ResNeXt{50,101,152}, ResNet{50,101,152}, Feature Pyramid Networks, and
VGG16.

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

Team Members - Daniel Griffin, Yudhister Satija

3. Platforms for Running Code:
a. AWS p2.xlarge GPU instances (Ubuntu 16.04 LTS images, Maybe DeepNet

Images)
b. Docker

i. Vanilla Docker and Nividia-Docker
c. Condor GPU instances (If HPC gets more docker instances up maybe)

4. Frameworks for Implementing Code:
a. Caffe2, Tensorflow/Keras, Python+Libs

Datasets to Use:
1. Datasets:

a. COCO http://cocodataset.org/#download
b. PASCAL VOC http://host.robots.ox.ac.uk/pascal/VOC/
c. Kitti http://www.cvlibs.net/datasets/kitti/eval_object.php
d. Hand Annotated Coco Image Dataset

https://github.com/visipedia/annotation_tools (To create our own images to break
models)

Metrics to Track:
1. Accuracy Based Metrics

a. Cross-Validated Precision, Recall, F1, Accuracy, Mean, Std Dev, PR
Curves/Cost Sensitive Classification Analysis, Mean Average Precision,
Intersection Over Union

b. Pure performance metrics as shown above, but on an untouched held aside test
set (which most analysis fails to do properly).

c. T-Test between models to check for statistically significant differences in each of
the metrics.

2. Resource Based Metrics
a. Time to train (Maybe take this from other works since it takes a long time)
b. Time to perform inference per image, per-object
c. Memory usage of model
d. Histogram of image performances

i. Best Image Class Performance
ii. Worst Image Class Performance

3. Noise Sensitivity
a. Add gaussian and random noise to every image and compare change in

performance.
b. Add all noises until an image changes classification, or classification confidence

gap drops below certain threshold or ratio.
c. Sensitivity to orientation, scale, lighting conditions/ exposure (pixel intensity

insensitivity)
d. Links related to above sensitivity testing suggestions:

(http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf,
https://arxiv.org/pdf/1604.04004.pdf,
https://en.wikipedia.org/wiki/Sensitivity_analysis)

http://cocodataset.org/#download
http://host.robots.ox.ac.uk/pascal/VOC/
http://www.cvlibs.net/datasets/kitti/eval_object.php
https://github.com/visipedia/annotation_tools
http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf
https://arxiv.org/pdf/1604.04004.pdf
https://en.wikipedia.org/wiki/Sensitivity_analysis

Team Members - Daniel Griffin, Yudhister Satija

Further Notes and References
Possible Deep Net Detection Links:

1. https://github.com/kjw0612/awesome-deep-vision
2. https://github.com/Smorodov/Deep-learning-object-detection-links.
3. https://github.com/facebookresearch/Detectron
4. https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html

Architecture Links:

1. https://github.com/caffe2/caffe2
2. http://chtc.cs.wisc.edu/approach.shtml, http://chtc.cs.wisc.edu/HPCuseguide.shtml

Data Sources:

1. Coco dataset
2. PASCAL VOC dataset
3. Kitti object detection data set (No one has done this yet for coco based models)
4. Hand Annotated Coco Image Dataset https://github.com/visipedia/annotation_tools

(Create our own images to break models)

Metrics To Track:

1. Accuracy Based Metrics
a. Cross-Validated Precision, Recall, F1, Accuracy, Mean, Std Dev, PR

Curves/Cost Sensitive Classification Analysis, Mean Average Precision,
Intersection Over Union

b. Pure performance metrics as shown above, but on an untouched held aside test
set (which most analysis fails to do properly).

c. T-Test between models to check for statistically significant differences in each of
the metrics.

2. Resource Based Metrics
a. Time to train (Maybe take this from other works since it takes a long time)
b. Time to perform inference per instance, per-object
c. Memory usage of model
d. Histogram of image performances

i. Best Image Performance
ii. Worst Image Performance

3. Noise Sensitivity
a. Add gaussian and random noise to every image and compare change in

performance.
b. Add all noises until an image changes classification, or classification confidence

gap drops below certain threshold or ratio.

https://github.com/kjw0612/awesome-deep-vision
https://github.com/Smorodov/Deep-learning-object-detection-links
https://github.com/facebookresearch/Detectron
https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
https://github.com/caffe2/caffe2
http://chtc.cs.wisc.edu/approach.shtml
http://chtc.cs.wisc.edu/HPCuseguide.shtml
https://github.com/visipedia/annotation_tools

Team Members - Daniel Griffin, Yudhister Satija

c. Sensitivity to orientation, scale, lighting conditions/ exposure (pixel intensity
insensitivity)

d. Links related to above sensitivity testing suggestions:
(http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf,
https://arxiv.org/pdf/1604.04004.pdf,
https://en.wikipedia.org/wiki/Sensitivity_analysis)

http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf
https://arxiv.org/pdf/1604.04004.pdf
https://en.wikipedia.org/wiki/Sensitivity_analysis

