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Midterm Report 

Why we decided to change our proposal 

Challenges we faced with the original proposal 
Our original plan was to try to implement the networks from the paper ‘A Unified 

Multi-scale Deep CNN for Fast Object Detection’. However, we came to the conclusion that 
there were simply too many challenges to try to overcome in a reasonable amount of time. 
Some of these issues include the problem that the network might require too much time to 
implement or possibly even train (given we could implement it) within the given time restrictions. 
The paper also has many very particular nuances about how data is labeled, how data is 
sampled (special objectness bootstrapping), how the network is initialized, how the network is 
trained through multiple phases, separate stages of parameter modification etc. Some other 
aspects of overall complexity included the proposal network complexity, prediction network 
complexity, sampling methods, data set weighting and importance methods, hand tuned SGD, 
hand tuned weight transitions, unclear intermediate image scaling, deconvolution layers, etc. 

We came to the  conclusion that the paper's methods are so fine tuned that the resulting 
network is almost certainly overfitted to the data set used by the paper, and any extensions (if 
any could even be made) would have small value. Many papers in the deep net object detection 
field in fact seem to be this way, and indicate a somewhat “directionless” notion of general 
research that favors overfitting models specific to a specific task, or data set that likely don’t 
generalize well. This realization, in part, helped lead us to our updated proposal described in the 
next section. 

Updated proposal 

Problem? 
How well do current cutting edge deep neural networks work in terms of accuracy, time 

to train, time to predict, kind of image, and sensitivity to noise? How statistically different are the 
most representative kinds of deep neural network object detection models in terms of 
performance? How do the deep network object detection models differ, how does this contribute 
to performance, and are there any rules, guidelines, or insights that can be used in general for 
developing deep neural network based object detection models? These are just a few important 
questions that require substantial analysis and benchmarking of existing deep neural network 
based object detection models. 

We seek to compare and bench-mark several representative techniques, each of which 
may not be super-optimized. In doing so, we seek to gain some intuition about the relative 
limitations / advantages of different methods in terms of performance, robustness, and in 
dealing with different kinds of images. 
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Importance? 
While some simple benchmarking has been previously performed, there exists a need to 

thoroughly benchmark and explore today’s existing cutting edge object detection models to 
understand how they differ, potential shortcomings, and how new models may be designed that 
improve upon issues that exist with today’s models. While it is known that deep neural networks 
produce some of the highest detection performance, it is not yet fully understood if there are 
good rules or guidelines for designing modern detection networks, and the full capabilities or 
drawbacks of existing cutting edge detection networks are only understood at a cursory level. 
Deep analysis of today’s cutting edge object detection neural networks is necessary to 
understand where improvements should be made for future research, which methods should be 
applied for different scenarios, when current methods perform within their suggested 
performance bounds, and the potentially unstated drawbacks of current methods. 

State-of-the-art? 
We aim to benchmark some of the most commonly used, modern deep neural networks 

including Mask R-CNN , RetinaNet, Faster R-CNN, RPN, Fast R-CNN, and R-FCN. Some of the 
pre-trained backbone networks we are looking to use include ResNeXt{50,101,152}, 
ResNet{50,101,152}, Feature Pyramid Networks, and VGG16. The datasets we aim to use 
include the COCO dataset, PASCAL VOC dataset, and the Kitti object detection dataset. These 
network architecture designs, and network backbones represent some of the most common 
cutting edge object detection deep neural networks that exist today. We hope to also be able to 
implement and test the YOLO (You only look once) network structure if we have time, as it is a 
network proposed to focus more on speedy predictions for near-real-time applications. 

In terms of actual analysis, not much work has been performed into analysis of deep 
neural network models other than basic average performance metrics of individual models. Most 
work focuses more on proposing a new architecture for a deep network object detection model, 
rather than comparing its significant difference with existing methods, major fundamental 
drawbacks, and other ways in which the network can be fooled or broken. In terms of 
robustness and sensitivity to noise, even less work on deep network based object detection 
models has been performed. 

Existing system or New approach? 
We plan on benchmarking existing neural network designs and implementations that are 

representative of current deep neural network object detection based methods, with one 
particular goal being a proposal and outline of future research work that should be developed to 
address some of the issues we find. This might fall under the category of a “New approach”. 
However, we also plan on performing deeper analysis of existing methods than has been 
previously performed to provide for a better overall understanding of how well modern methods 
compare, how similar and different the methods are, which approaches seem to work the best, 
and what shortcoming exist with existing methods. 

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
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Evaluation and Results plan? 
Our project proposal centers around benchmarking and analyzing different deep object 

detection networks, so the evaluation phase is really the meat of our project (aside from getting 
everything up and running). The details of what we plan on benchmarking, what platforms we 
plan to use, what data sets we plan to use, and what metrics we plan to calculate are given in 
the “Plan for the rest of the semester” section below.  

Current progress 

Current results. 
● Running on Condor: 

○ Condor standard submit: We’ve set up all of the scripts and code necessary for 
running on the standard condor instances. 

○ Condor Docker based submit: We’ve set up all of the scripts and code necessary 
for running on the docker based condor instances. 

○ Condor Nvidia Docker GPU submit: We’ve set up all of the scripts and code 
necessary for running on the nvidia-docker GPU based condor instances. 

● Running on AWS: 
○ EC2 GPU instances: We’ve developed a process for provisioning AWS EC2 

p2.xlarge GPU instances, along with everything that goes with that (VPC 
nets/subnets, security configs, S3 block storage instances, data center limits 
provisioning, etc…) 

○ Docker everything: we’ve dockerized all of our code to run on the GPU based 
instances. (You can build on a non-GPU based instance, but running the deep 
nets requires GPUs since the tensor operators are implemented in terms of GPU 
operations) 

● Running initial object detection network 
○ Network Architecture, backbone: The object detection results provided below are 

for a ‘Mask R-CNN’ model with a ‘ResNet-101-FPN’ network initialization. 
○ Images we’ve run on: 

■ We’ve run the above specified network on some basic, annotated images 
and generated some resulting images, which we show below. 



Team Members - Daniel Griffin, Yudhister Satija 

 

Challenges. 
● Refactoring our project and proposal. 

○ So we had to rapidly change our direction when we realized the tedious 
complexity of our original project proposal, and search for a new potential project. 
We had to review lots of object detection papers and methods to come up with a 
new project to work on. Once we had an idea that we wanted to try to perform a 
set of benchmarking, we had to find candidate models, platforms, frameworks, 
datasets, and metrics that we thought we could achieveably use for our project. 
Some of the challenges of these are found in the next subsections. 

● Running on Condor GPUs and getting access to resources. 
○ Most of today’s existing deep neural network, object detection based models 

require GPUs (A major drawback which I believe will eventually be remedied with 
FPGAs due to their high speed, low power nature which makes them a defacto 
choice for most industry scale, long term use). So, we talked to the University of 
Wisconsin’s HPC group about running on the GPU based condor instances. We 
spent a good amount of time writing the submission and monitoring scripts for the 
GPU instances, and in particular the docker based GPU instances to simplify 
code submission. However, there are only 2 machines in HPC with 4 total GPUs 
that currently run docker, and the queue is so congested that using condor for 
our project became clearly impractical (I submitted a GPU based docker job 
about a week ago that still hasn’t been run yet). I’ve talked with the condor HPC 

https://medium.com/@julsimon/building-fpga-applications-on-aws-and-yes-for-deep-learning-too-643097257192
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staff, and they are working on getting docker running on the other 2 older 
instances (each with 6-8 GPUs each) that don’t have Docker (But we can’t use 
these without docker, as the nature of the code we are trying to run on the 
machines requires installation and system configuration permissions). 

● Running on AWS, and the cost associated with it. 
○ Since we couldn’t run on the condor instances, we decided to turn to Amazon 

Web Services (AWS) to try to provision instances. After a few days of working 
with AWS EC2 instances, we finally developed a process for provisioning AWS 
GPU instance resources for running our nvidia-docker based code, and running 
some of our initial deep net object detection models (Many of which need GPUs 
for their operators, and up to 15GB of dedicated system memory). The downside 
with this is that AWS GPU instances are $1/HR to provision and use which is 
quite expensive for compute resources (And why we are trying to avoid training 
models that can each take anywhere from hours to days to train). 

● Dataset non-uniformity. 
○ While there exist some different datasets for benchmarking object detection, 

most data sets have different formats. We have decided to try to standardize to 
the COCO dataset API, and to try to convert some of the other data sets we 
would like to use to the COCO annotation specifications. This means that we will 
likely have to write scripts for generating COCO annotated images from each 
data set. 

Plan for the rest of the semester. 

Outline of goals and Project Specifics. 
Below, we outline the specifics of what we will try to implement in terms of the deep net 

architectures, datasets, platforms, and metrics. 
 
Insights, Design Guidelines, and Further Research Avenues: 

1. Benchmark each network architecture and backbone structure individually for 
performance, resource, and network sensitivity metrics. 

2. Compare benchmarks of each network and structure against each other for 
statistical significance. 

3. Outline insights and attempt to develop general recipe-book object recognition 
network algorithm design for different scenarios, and propose new research 
directions. 

Deep Net Object Detectors: 
1. Deep Net Architectures: 

a. Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, and R-FCN. 
2. Deep Net Pre-Trained Networks: 

a. ResNeXt{50,101,152}, ResNet{50,101,152}, Feature Pyramid Networks, and 
VGG16. 

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
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3. Platforms for Running Code: 
a. AWS p2.xlarge GPU instances (Ubuntu 16.04 LTS images, Maybe DeepNet 

Images) 
b. Docker 

i. Vanilla Docker and Nividia-Docker 
c. Condor GPU instances (If HPC gets more docker instances up maybe) 

4. Frameworks for Implementing Code: 
a. Caffe2, Tensorflow/Keras, Python+Libs 

Datasets to Use: 
1. Datasets: 

a. COCO http://cocodataset.org/#download  
b. PASCAL VOC http://host.robots.ox.ac.uk/pascal/VOC/  
c. Kitti http://www.cvlibs.net/datasets/kitti/eval_object.php  
d. Hand Annotated Coco Image Dataset 

https://github.com/visipedia/annotation_tools (To create our own images to break 
models) 

Metrics to Track: 
1. Accuracy Based Metrics 

a. Cross-Validated Precision, Recall, F1, Accuracy, Mean, Std Dev, PR 
Curves/Cost Sensitive Classification Analysis, Mean Average Precision, 
Intersection Over Union 

b. Pure performance metrics as shown above, but on an untouched held aside test 
set (which most analysis fails to do properly). 

c. T-Test between models to check for statistically significant differences in each of 
the metrics. 

2. Resource Based Metrics 
a. Time to train (Maybe take this from other works since it takes a long time) 
b. Time to perform inference per image, per-object 
c. Memory usage of model 
d. Histogram of image performances 

i. Best Image Class Performance 
ii. Worst Image Class Performance 

3. Noise Sensitivity 
a. Add gaussian and random noise to every image and compare change in 

performance. 
b. Add all noises until an image changes classification, or classification confidence 

gap drops below certain threshold or ratio. 
c. Sensitivity to orientation, scale, lighting conditions/ exposure (pixel intensity 

insensitivity) 
d. Links related to above sensitivity testing suggestions: 

(http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf, 
https://arxiv.org/pdf/1604.04004.pdf, 
https://en.wikipedia.org/wiki/Sensitivity_analysis) 

http://cocodataset.org/#download
http://host.robots.ox.ac.uk/pascal/VOC/
http://www.cvlibs.net/datasets/kitti/eval_object.php
https://github.com/visipedia/annotation_tools
http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf
https://arxiv.org/pdf/1604.04004.pdf
https://en.wikipedia.org/wiki/Sensitivity_analysis


Team Members - Daniel Griffin, Yudhister Satija 

Further Notes and References 
Possible Deep Net Detection Links: 

1. https://github.com/kjw0612/awesome-deep-vision  
2. https://github.com/Smorodov/Deep-learning-object-detection-links.  
3. https://github.com/facebookresearch/Detectron 
4. https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html  

 
Architecture Links: 

1. https://github.com/caffe2/caffe2  
2. http://chtc.cs.wisc.edu/approach.shtml, http://chtc.cs.wisc.edu/HPCuseguide.shtml  

 
Data Sources: 

1. Coco dataset 
2. PASCAL VOC dataset 
3. Kitti object detection data set (No one has done this yet for coco based models) 
4. Hand Annotated Coco Image Dataset https://github.com/visipedia/annotation_tools 

(Create our own images to break models) 
 
Metrics To Track: 

1. Accuracy Based Metrics 
a. Cross-Validated Precision, Recall, F1, Accuracy, Mean, Std Dev, PR 

Curves/Cost Sensitive Classification Analysis, Mean Average Precision, 
Intersection Over Union 

b. Pure performance metrics as shown above, but on an untouched held aside test 
set (which most analysis fails to do properly). 

c. T-Test between models to check for statistically significant differences in each of 
the metrics. 

2. Resource Based Metrics 
a. Time to train (Maybe take this from other works since it takes a long time) 
b. Time to perform inference per instance, per-object 
c. Memory usage of model 
d. Histogram of image performances 

i. Best Image Performance 
ii. Worst Image Performance 

3. Noise Sensitivity 
a. Add gaussian and random noise to every image and compare change in 

performance. 
b. Add all noises until an image changes classification, or classification confidence 

gap drops below certain threshold or ratio. 

https://github.com/kjw0612/awesome-deep-vision
https://github.com/Smorodov/Deep-learning-object-detection-links
https://github.com/facebookresearch/Detectron
https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
https://github.com/caffe2/caffe2
http://chtc.cs.wisc.edu/approach.shtml
http://chtc.cs.wisc.edu/HPCuseguide.shtml
https://github.com/visipedia/annotation_tools
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c. Sensitivity to orientation, scale, lighting conditions/ exposure (pixel intensity 
insensitivity) 

d. Links related to above sensitivity testing suggestions: 
(http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf, 
https://arxiv.org/pdf/1604.04004.pdf, 
https://en.wikipedia.org/wiki/Sensitivity_analysis) 

 
 

http://hera.inf-cv.uni-jena.de:6680/pdf/Rodner16_FRN.pdf
https://arxiv.org/pdf/1604.04004.pdf
https://en.wikipedia.org/wiki/Sensitivity_analysis

